187 research outputs found

    Phenotype MicroArray Profiling of Zymomonas mobilis ZM4

    Get PDF
    In this study, we developed a Phenotype MicroArray™ (PM) protocol to profile cellular phenotypes in Zymomonas mobilis, which included a standard set of nearly 2,000 assays for carbon, nitrogen, phosphorus and sulfur source utilization, nutrient stimulation, pH and osmotic stresses, and chemical sensitivities with 240 inhibitory chemicals. We observed two positive assays for C-source utilization (fructose and glucose) using the PM screen, which uses redox chemistry and cell respiration as a universal reporter to profile growth phenotypes in a high-throughput 96-well plate-based format. For nitrogen metabolism, the bacterium showed a positive test results for ammonia, aspartate, asparagine, glutamate, glutamine, and peptides. Z. mobilis appeared to use a diverse array of P-sources with two exceptions being pyrophosphate and tripolyphosphate. The assays suggested that Z. mobilis uses both inorganic and organic compounds as S-sources. No stimulation by nutrients was detected; however, there was evidence of partial inhibition by purines and pyrimidines, NAD, and deferoxamine. Z. mobilis was relatively resistant to acid pH, tolerating a pH down to about 4.0. It also tolerated phosphate, sulfate, and nitrate, but was rather sensitive to chloride and nitrite. Z. mobilis showed resistance to a large number of diverse chemicals that inhibit most bacteria. The information from PM analysis provides an overview of Z. mobilis physiology and a foundation for future comparisons of other wild-type and mutant Z. mobilis strains

    IFN-γ-inducible protein of 10 kDa upregulates the effector functions of eosinophils through β2 integrin and CXCR3

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eosinophils play an important role in the pathogenesis of bronchial asthma and its exacerbation. Recent reports suggest the involvement of IFN-γ-inducible protein of 10 kDa (IP-10) in virus-induced asthma exacerbation. The objective of this study was to examine whether CXCR3 ligands including IP-10 modify the effector functions of eosinophils.</p> <p>Methods</p> <p>Eosinophils isolated from the blood of healthy donors were stimulated with CXCR3 ligands and their adhesion to rh-ICAM-1 was then measured using eosinophil peroxidase assays. The generation of eosinophil superoxide anion (O<sub>2</sub><sup>-</sup>) was examined based on the superoxide dismutase-inhibitable reduction of cytochrome C. Eosinophil-derived neurotoxin (EDN) release was evaluated to determine whether CXCR3 ligands induced eosinophil degranulation. Cytokine and chemokine production by eosinophils was examined using a Bio-plex assay.</p> <p>Results</p> <p>Eosinophil adhesion to ICAM-1 was significantly enhanced by IP-10, which also significantly induced eosinophil O<sub>2</sub><sup>- </sup>generation in the presence of ICAM-1. Both the enhanced adhesion and O<sub>2</sub><sup>- </sup>generation were inhibited by an anti-β<sub>2 </sub>integrin mAb or an anti-CXCR3 mAb. Other CXCR3 ligands, such as monokine induced by IFN-γ (Mig) and IFN-inducible T cell α chemoattractant (I-TAC), also induced eosinophil adhesion and O<sub>2</sub><sup>- </sup>generation in the presence of ICAM-1. IP-10, but not Mig or I-TAC, increased the release of EDN. IP-10 increased the production of a number of cytokines and chemokines by eosinophils.</p> <p>Conclusions</p> <p>These findings suggest that CXCR3 ligands such as IP-10 can directly upregulate the effector functions of eosinophils. These effects might be involved in the activation and infiltration of eosinophils in the airway of asthma, especially in virus-induced asthma exacerbation.</p

    Identification of a Siglec-F+ granulocyte-macrophage progenitor

    Get PDF
    In recent years multi-parameter flow cytometry has enabled identification of cells at major stages in myeloid development; from pluripotent hematopoietic stem cells, through populations with increasingly limited developmental potential (common myeloid progenitors and granulocyte-macrophage progenitors), to terminally differentiated mature cells. Myeloid progenitors are heterogeneous, and the surface markers that define transition states from progenitors to mature cells are poorly characterized. Siglec-F is a surface glycoprotein frequently used in combination with IL-5 receptor alpha (IL5Rα) for the identification of murine eosinophils. Here, we describe a CD11b+ Siglec-F+ IL5Rα- myeloid population in the bone marrow of C57BL/6 mice. The CD11b+ Siglec-F+ IL5Rα- cells are retained in eosinophil deficient PHIL mice, and are not expanded upon overexpression of IL-5, indicating that they are upstream or independent of the eosinophil lineage. We show these cells to have GMP-like developmental potential in vitro and in vivo, and to be transcriptionally distinct from the classically described GMP population. The CD11b+ Siglec-F+ IL5Rα- population expands in the bone marrow of Myb mutant mice, which is potentially due to negative transcriptional regulation of Siglec-F by Myb. Lastly, we show that the role of Siglec-F may be, at least in part, to regulate GMP viability

    A module-based analytical strategy to identify novel disease-associated genes shows an inhibitory role for interleukin 7 Receptor in allergic inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification of novel genes by high-throughput studies of complex diseases is complicated by the large number of potential genes. However, since disease-associated genes tend to interact, one solution is to arrange them in modules based on co-expression data and known gene interactions. The hypothesis of this study was that such a module could be a) found and validated in allergic disease and b) used to find and validate one ore more novel disease-associated genes.</p> <p>Results</p> <p>To test these hypotheses integrated analysis of a large number of gene expression microarray experiments from different forms of allergy was performed. This led to the identification of an experimentally validated reference gene that was used to construct a module of co-expressed and interacting genes. This module was validated in an independent material, by replicating the expression changes in allergen-challenged CD4<sup>+ </sup>cells. Moreover, the changes were reversed following treatment with corticosteroids. The module contained several novel disease-associated genes, of which the one with the highest number of interactions with known disease genes, <it>IL7R</it>, was selected for further validation. The expression levels of <it>IL7R </it>in allergen challenged CD4<sup>+ </sup>cells decreased following challenge but increased after treatment. This suggested an inhibitory role, which was confirmed by functional studies.</p> <p>Conclusion</p> <p>We propose that a module-based analytical strategy is generally applicable to find novel genes in complex diseases.</p

    Chronic OVA allergen challenged Siglec-F deficient mice have increased mucus, remodeling, and epithelial Siglec-F ligands which are up-regulated by IL-4 and IL-13

    Get PDF
    Abstract Background In this study we examined the role of Siglec-F, a receptor highly expressed on eosinophils, in contributing to mucus expression, airway remodeling, and Siglec-F ligand expression utilizing Siglec-F deficient mice exposed to chronic allergen challenge. Methods Wild type (WT) and Siglec-F deficient mice were sensitized and challenged chronically with OVA for one month. Levels of airway inflammation (eosinophils), Siglec-F ligand expresion and remodeling (mucus, fibrosis, smooth muscle thickness, extracellular matrix protein deposition) were assessed in lung sections by image analysis and immunohistology. Airway hyperreactivity to methacholine was assessed in intubated and ventilated mice. Results Siglec-F deficient mice challenged with OVA for one month had significantly increased numbers of BAL and peribronchial eosinophils compared to WT mice which was associated with a significant increase in mucus expression as assessed by the number of periodic acid Schiff positive airway epithelial cells. In addition, OVA challenged Siglec-F deficient mice had significantly increased levels of peribronchial fibrosis (total lung collagen, area of peribronchial trichrome staining), as well as increased numbers of peribronchial TGF-β1+ cells, and increased levels of expression of the extracellular matrix protein fibronectin compared to OVA challenged WT mice. Lung sections immunostained with a Siglec-Fc to detect Siglec-F ligand expression demonstrated higher levels of expression of the Siglec-F ligand in the peribronchial region in OVA challenged Siglec-F deficient mice compared to WT mice. WT and Siglec-F deficient mice challenged intranasally with IL-4 or IL-13 had significantly increased levels of airway epithelial Siglec-F ligand expression, whereas this was not observed in WT or Siglec-F deficient mice challenged with TNF-α. There was a significant increase in the thickness of the peribronchial smooth muscle layer in OVA challenged Siglec-F deficient mice, but this was not associated with significant increased airway hyperreactivity compared to WT mice. Conclusions Overall, this study demonstrates an important role for Siglec-F in modulating levels of chronic eosinophilic airway inflammation, peribronchial fibrosis, thickness of the smooth muscle layer, mucus expression, fibronectin, and levels of peribronchial Siglec-F ligands suggesting that Siglec-F may normally function to limit levels of chronic eosinophilic inflammation and remodeling. In addition, IL-4 and IL-13 are important regulators of Siglec-F ligand expression by airway epithelium

    Visualization and Curve-Parameter Estimation Strategies for Efficient Exploration of Phenotype Microarray Kinetics

    Get PDF
    The Phenotype MicroArray (OmniLog® PM) system is able to simultaneously capture a large number of phenotypes by recording an organism's respiration over time on distinct substrates. This technique targets the object of natural selection itself, the phenotype, whereas previously addressed '-omics' techniques merely study components that finally contribute to it. The recording of respiration over time, however, adds a longitudinal dimension to the data. To optimally exploit this information, it must be extracted from the shapes of the recorded curves and displayed in analogy to conventional growth curves.The free software environment R was explored for both visualizing and fitting of PM respiration curves. Approaches using either a model fit (and commonly applied growth models) or a smoothing spline were evaluated. Their reliability in inferring curve parameters and confidence intervals was compared to the native OmniLog® PM analysis software. We consider the post-processing of the estimated parameters, the optimal classification of curve shapes and the detection of significant differences between them, as well as practically relevant questions such as detecting the impact of cultivation times and the minimum required number of experimental repeats.We provide a comprehensive framework for data visualization and parameter estimation according to user choices. A flexible graphical representation strategy for displaying the results is proposed, including 95% confidence intervals for the estimated parameters. The spline approach is less prone to irregular curve shapes than fitting any of the considered models or using the native PM software for calculating both point estimates and confidence intervals. These can serve as a starting point for the automated post-processing of PM data, providing much more information than the strict dichotomization into positive and negative reactions. Our results form the basis for a freely available R package for the analysis of PM data

    Reducing LPS content in cockroach allergens increases pulmonary cytokine production without increasing inflammation: A randomized laboratory study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endotoxins are ubiquitously present in the environment and constitute a significant component of ambient air. These substances have been shown to modulate the allergic response, however a consensus has yet to be reached whether they attenuate or exacerbate asthmatic responses. The current investigation examined whether reducing the concentration of lipopolysaccharide (LPS) in a house dust extract (HDE) containing high concentrations of both cockroach allergens <abbrgrp><abbr bid="B1">1</abbr></abbrgrp> and LPS would attenuate asthma-like pulmonary inflammation.</p> <p>Methods</p> <p>Mice were sensitized with CRA and challenged with the intact HDE, containing 182 ng of LPS, or an LPS-reduced HDE containing 3 ng LPS, but an equivalent amount of CRA. Multiple parameters of asthma-like pulmonary inflammation were measured.</p> <p>Results</p> <p>Compared to HDE challenged mice, the LPS-reduced HDE challenged mice had significantly reduced TNFα levels in the bronchoalveolar lavage fluid. Plasma levels of IgE and IgG1 were significantly reduced, however no change in CRA-specific IgE was detected. In HDE mice, plasma IgG2a levels were similar to naïve mice, while LPS-reduced HDE mice had significantly greater concentrations. Reduced levels of LPS in the HDE did not decrease eosinophil or neutrophil recruitment into the alveolar space. Equivalent inflammatory cell recruitment occurred despite having generally higher pulmonary concentrations of eotaxins and CXC chemokines in the LPS-reduced HDE group. LPS-reduced HDE challenge induced significantly higher concentrations of IFNγ, and IL-5 and IL-13 in the BAL fluid, but did not decrease airways hyperresponsiveness or airway resistance to methacholine challenge. <it>Conclusion: </it>These data show that reduction of LPS levels in the HDE does not significantly protect against the severity of asthma-like pulmonary inflammation.</p

    Clinical practice: Breastfeeding and the prevention of allergy

    Get PDF
    The increase in allergic disease prevalence has led to heightened interest in the factors determining allergy risk, fuelled by the hope that by influencing these factors one could reduce the prevalence of allergic conditions. The most important modifiable risk factors for allergy are maternal smoking behaviour and the type of feeding. A smoke-free environment for the child (to be), exclusive breastfeeding for 4–6 months and the postponement of supplementary feeding (solids) until 4 months of age are the main measures considered effective. There is no place for restricted diets during pregnancy or lactation. Although meta-analyses suggest that hypoallergenic formula after weaning from breastfeeding grants protection against the development of allergic disease, the evidence is limited and weak. Moreover, all current feeding measures aiming at allergy prevention fail to show effects on allergic manifestations later in life, such as asthma. In conclusion, the allergy preventive effect of dietary interventions in infancy is limited. Counselling of future parents on allergy prevention should pay attention to these limitations

    Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis

    Get PDF
    Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of Onygenales to transfer from soil to animal hosts.National Institute of Allergy and Infectious Diseases (U.S.)National Institutes of Health. Department of Health and Human Services (contract HHSN266200400001C)National Institutes of Health. Department of Health and Human Services(contract HHSN2722009000018C)Brazil. National Council for Scientific and Technological Developmen
    corecore